Puente celular conchitas Externa 10X fot
100X-3_edited_edited.jpg
120X_edited.jpg
200X_edited.jpg

BIOLOGICAL, BIOINSPIRED AND BIOMATERIALS

Welcome to the multidisciplinary research group B3Mat (Biological, Bioinspired and Biomaterials) of the Adolfo Ibáñez University, located in the city of Viña del Mar, Chile.

 

Our objective is to develop strategies to value the use of natural and artificial biomaterials for potential biotechnological and biomedical applications. For that we have established a multiscale and integrative technological platform of experimental biomechanical models, in vitro biological models and computational models.

 

At B3mat we firmly believe that science is a social and collaborative activity, so our work not only seeks to conduct high-level research, but also to help it reach citizens.

 

We are a research group committed to both inclusion and the environment as well as education and transfer of scientific knowledge to our community.

 

MEMBERS

The members of our research group come from various branches of science and engineering, forming a multidisciplinary team. In addition, they train undergraduate and postgraduate students, both at the Adolfo Ibáñez University and others nationwide. They also actively collaborate with researchers from Chile and abroad.

FACULTY AND FELLOWS

juan-francisco-vivanco-232x232-c-default

JUAN F. VIVANCO (DIRECTOR)
Associate Professor

Ph.D. in Biomaterials and Biomechanics

carola-millan.jpg

CAROLA MILLÁN GIOVANETTI
Associate Professor

Ph.D. in Biological Sciences

isabel_benjumeda.jpg

ISABEL BENJUMEDA WIJNHOVEN
Assistant Professor

Ph.D. in Neurosciences

IMG-20200907-WA0029_edited_edited_edited.jpg

RAÚL VALLEJOS BAIER
Academic Instructor

Ph.D. in Biology

foto Carolina Angulo.jpeg

CAROLINA ANGULO PINEDA
Postdoc

Ph.D. in Engineering Sciences - Materials

STUDENTS AND COLLABORATORS

 

PUBLICATIONS

1.   Vallejos Baier, R., Contreras, J., Toro, C., Bustamante, M., Pérez, L., Burda, I., Aiyangar, A., & Vivanco, JF "Structure-function assessment of 3D-printed porous scaffolds by a low-cost / open source fused filament fabrication printer ". Materials Science and Engineering C: Materials for Biological Applications. 2021

2.   Benjumeda W., Vallejos R., Santibanez J., Millán C., Vivanco JF “Analysis of cell-biomaterial interaction through cellular bridge formation in the interface between hGMSCs and CaP bioceramics” Scientific Reports. 2020.

3.   García R., Poupin M., Urrutia C., Rodríguez A., Grenier C., Vivanco JF, Ramajo L., Benjumeda I., Lagos N., Lardies M. "An intrapopulational study of the Antarctic bivalve Laternula elliptica (PP King, 1832) at King George Island with emphasis on organic components and biochemical properties of the shell "(submitted). 2020.

 

Four.   Norambuena-Contreras J., Arteaga-Perez L., Guadarrama-Lezama A., Briones R., Vivanco JF, Gonzalez-Torre I. “Microencapsulated Bio-Based Rejuvenators for the Self-Healing of Bituminous Materials” Materials. 2020.

 

5.   Vallejos R., Irribarra V., Benjumeda-Wijnhoven I., Millán C., Vivanco JF “Microporosity Clustering Assessment in Calcium Phosphate Bioceramic Particles”. Frontiers in Bioengineering and Biotechnology. 2019.

 

6.   Vukasovic T., García C., Vivanco JF, Celentano D. “Characterization of the Mechanical response of thermoplastic parts fabricated with 3D printing” The International Journal of Advanced Manufacturing Technology. 2019.

 

7.   Millán C., Vivanco JF, Benjumeda-Wijnhoven IM, Bjelica S., Santibáñez JF “Mesenchymal Stem Cells and Calcium Phosphate Bioceramics: Implications in Periodontal Bone Regeneration”. Chapter from book: Advances in Experimental Medicine and Biology. Springer, New York, NY. 2018.

 

8.   Ruggeri F., Leiva V., Saulo H., Vivanco JF, “A Methodology Based on the Birnbaum-Saunders Distribution for Reliability Analysis Applied to Nano-materials”. Reliability Engineering & System Safety. 2017.

 

9.   Vivanco JF, Aiyangar A., Slane J., “Multiscale Biomechanical Characterization of Bioceramic Bone Scaffolds. Chapter from Book: Experimental Methods in Orthopedic Biomechanics. 2017.

 

10. Slane J., Vivanco JF, Squire M., Ploeg HL, "Characterization of the Quasi-Static and Viscoelastic Properties of Orthopedic Bone Cement at the Macro and Nanoscale." Journal of Biomedical Materials Research: Part B Applied Biomaterials. 2016.

 

11. Norambuena-Contreras J., Gonzalez-Torre I., Vivanco JF, Gacitúa W., “Nanomechanical Properties of Polymeric Fibers Used in Geosynthetics Composites”.  Polymer Testing. 2016.

 

12. Burgers T., Vivanco JF, Bart W., "Mice with a Heterozygous Lrp6 Deletion Have Impaired Fracture Healing." Bone Research. 2016.

 

13. Meyer L, Johnson M., Cullen D., Vivanco JF, Blank R., Smith E., Ploeg HL "Combine Exposure to Big Endothelin-1 and Mechanical Loading in Bovine Sternal Cores Promotes Osteogenesis". Bone. 2016.

 

14. Marchant C., Leiva V., Cysneiros F., Vivanco JF, "Multivariate Birnbaum-Saunders Regression Models: Diagnostic Analysis and Application" Journal of Applied Statistics. 2016.

 

fifteen.  Leiva V., Vivanco JF, “Fatigue Models”. Wiley StatsRef: Statistics Reference Online. 2015.

 

16. Collins C., Vivanco JF, Burgers T., Ploeg HL "Fracture Healing in Mice Lacking Pten in Osteoblasts: A Micro-Computed Tomography Image-Based Analysis of the Mechanical Properties of the Femur." Journal of Biomechanics. 48 (2): 310-317. 2015.

 

17. Slane J., Vivanco JF, Squire M., Ploeg HL "Mechanical, Material, and Antimicrobial Properties of Acrylic Bone Cement Impregnated with Silver Nanoparticles" Materials Science and Engineering C: Materials for Biological Applications. 48: 188-196. 2015.

 

18. Vivanco J., Burgers T., García S., Ploeg HL “Estimating the Density of Human Trabecular Bone Using Clinical CT Scan Data”. Journal of Engineering in Medicine. 228: 616-626. 2014.

 

19. Vivanco J., Jakes J., Slane J., Ploeg HL "Accounting for Structural Compliance in Nanoindentation Measurements of Bioceramic Bone Scaffolds". Journal of Ceramics International. 2014.

 

20. Slane J., Vivanco J., Ploeg HL, Squire M. "The Influence of Low Concentration a Water Soluble Porogen on the Material Properties, Antibiotic Release, and Biofilm Inhibition of an Acrylic Bone Cement." Materials Science and Engineering C: Materials for Biological Applications. 42: 168-176. 2014.

 

21. Aiyangar A., Vivanco J., Au, A., Smith E., Ploeg HL "Axial and Transverse Compressive Properties of Human Lumbar Vertebral Trabecular Bone".  Journal of Biomechanical Engineering. 2014.

 

22. Slane J., Vivanco J., Ebenstein D., Squire M., Ploeg HL "Multiscale Characterization of Acrylic Bone Cement Modified with Functionalized Mesoporous Silica Nanoparticles". Journal of Mechanical Behavior of Biomedical Materials. 37: 141-152. 2014.

 

23. Slane J., Vivanco J., Meyer J., Ploeg HL, Squire M. "Modification of Acrylic Bone Cement with Mesoporous Silica Nanoparticles: Effects on Mechanical, Fatigue and Absorption Properties." Journal of Mechanical Behavior of Biomedical Materials. 29: 451-461. 2014.

 

24. Vivanco J., García S., Ploeg HL, Alvarez G., Cullen D., Smith E. "Apparent Elastic Modulus of Ex Vivo Trabecular Bovine Bone Increases with Dynamic Loading". Journal of Engineering in Medicine. 27 (8): 902-910.  2013.

 

25. Vivanco J., Aiyangar A., Araneda A., Ploeg HL, "Mechanical Characterization of Injection-Molded Macro Porous Bioceramic Bone Scaffolds". Journal of Mechanical Behavior of Biomedical Materials. 9: 137-152. 2012.

 

26. Vivanco J., Araneda A., Ploeg HL, "The Effect of the Sintering Temperature on Microstructural Properties of Bioceramic Bone Scaffolds". Biomaterials Science: Processing, Properties and Applications II. John Wiley & Sons, Inc. 101-109. 2012.

 

27. Vivanco J., Slane J., Nay R., Simpson A., Ploeg HL, "The Effect of Sintering Temperature on the Microstructure and Mechanical Properties of a Bioceramic Bone Scaffold." Journal of Mechanical Behavior of Biomedical Materials. 4: 2150-60. 2011.

 

28. Vivanco J., Smith B., Blake A., Ploeg HL, Turner K. "3D Elastomeric Scaffolds- Fabricated by Casting in Micro End Milled Molds." Journal of Biomimetics, Biomaterials and Tissue Engineering. 9: 17-23. 2011.

 

29.Vivanco J., Fang Z., Levine D., Ploeg HL “Evaluation of the Mechanical Behavior of a Direct Compression Molded Porous Tantalum-UHMWPE Construct: a Microstructural Model”. Journal of Applied Biomaterial and Biomechanics. 7: 34-42. 2009.

30.Vivanco J., Fang Z., Levine D., Ploeg HL "Microstructural Mechanical FE Analysis of Compression Molded Porous Tantalum-UHMWPE". Journal of Biomechanics. 41: S444. 2008

 

FACILITIES

We have equipment at the Bioengineering Center of the Adolfo Ibáñez University (UAI-Bio Center), Viña del Mar Campus. In addition, we have access to equipment outside the University, through collaborations and external services.

MOLECULAR BIOLOGY EQUIPMENT

We have traditional thermal cyclers (Applied Biosystems and Axygen) and a real-time thermal cycler (Agilent AriaMX), a Shimadzu spectrophotometer, a BioTek 800TS plate reader, a Promega Quantus fluorimeter, nucleic acid electrophoresis equipment (CBS Scientific) and proteins ( Biorad), ultracentrifuges (Boeco and Thermofisher) and all the reagents and supplies necessary for enzymatic and molecular analyzes.

CELL CULTURE ROOM

We have a clean room (QClass), which includes all the necessary equipment, such as a BioAir model TopSafe type II biosafety cabinet, a Logos Biosystems model LUNA-II automatic cell counter, a Motic model AE2000 inverted microscope, a ELMI model CM-7S centrifuge, and a Shel Lab model 2406-2 CO2 incubator. In addition, we have stocks of adult stem cells available in nitrogen, along with all the reagents and supplies necessary to perform in vitro experiments.

MECHANICAL EXPERIMENT EQUIPMENT

We have an Electrodynamic system (Test resources 800LE3) to carry out material characterization studies, static resistance and fatigue, with a load level of + -5.7 kN, maximum speed of 125 mm / s, and a maximum frequency of 15 Hz. We also have different types of fixings and load cells for different levels of force. In addition, we have a micromechanical system (Biomomentum model mach-1 v500c) to determine micro-scale mechanical properties.

3D PRINTING

We have commercial fused deposition modeling printers as well as a printer manufactured by our research group, which is used in both research and teaching. We also have 3D bioprinting technology, such as a Cellink Inkredible + biological printer, which has various biotinks to manufacture cell-loaded structures. Finally, we have a wide range of biotinks and polymer filaments and composites that can be used to make samples in the laboratory.

 
 

NEWS

October 18-19, 2021
B3MAT OPENLAB: WORKSHOP BIOENGINEERING
CAMPUS VIÑA DEL MAR

September 30, 2021
CAROLA MILLÁN PRESENTS THE MOLLUSCA PROJECT: AN INCLUSIVE BRIDGE BETWEEN SCIENCE AND SOCIETY

August 19, 2021
UAI HIGHLIGHTS INTERNATIONAL EXPERIENCE OF B3MAT STUDENTS IN SWISS EMPA LAB 

January 11, 2021
ISABEL BENJUMEDA LEADS THE TEACHING INNOVATION PROJECT AT UAI

December 14, 2020
HEALTH RESEARCH SPECIAL AT UAI HIGHLIGHTS THE WORK OF B3MAT

December 14, 2020
INTERNATIONAL SCIENTIFIC REPORTS MAGAZINE PUBLISHES UAI INVESTIGATIONS

November 19, 2020
RESEARCHERS FROM B3MAT AGAIN TO DEVELOP EXPERIMENTAL WORK IN A GRADUALLY WAY

November 02, 2020
MEMBERS OF B3MAT PARTICIPATED IN THE CHILEAN CONGRESS OF BIOMECHANICS AND BIOMATERIALS 

 

EDUCATION AND OUTREACH

EDUCATION

Information on courses taught by B3MAT researchers

OUTREACH

Information on outreach activities inside and outside the University

Imagen2.jpg

CONTACT

Thank you for your message!

Funding Sources